
Chaque domino est d’une telle taille qu’il recouvre exactement deux cases voisines de l’échiquier.
Supposons que l’on enlève les deux cases diagonalement opposées et que l’on ne conserve que 31 dominos.
Le défi consiste à placer les dominos de manière à recouvrir les cases restantes si c’est possible, ou à démontrer que ce n’est pas possible.
Bonne chance !!!
Pour les anglophones :
Mutilated Chessboard
The props for this problem are a chessboard and 32 dominoes.
Each domino is of such size that it exactly covers two adjacent squares on the board.
The 32 dominoes therefore can cover all 64 of the chessboard squares.
But now suppose we cut off two squares at diagonally opposite corners of the board and discard one of the dominoes, as shown in Figure.
Is it possible to place the 31 dominoes on the board so that all the remaining squares are covered?
If so, show how it can be done. If not, prove it impossible.